edexcel

Mark Scheme (Results)
Summer 2013
GCE Chemistry 6CH01/01R
The Core Principles of Chemistry

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk for our BTEC qualifications.
Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

If you have any subject specific questions about this specification that require the help of a subject specialist, you can speak directly to the subject team at Pearson.
Their contact details can be found on this link: www.edexcel.com/teachingservices.

You can also use our online Ask the Expert service at www.edexcel.com/ask. You will need an Edexcel username and password to access this service.

Pearson: helping people progress, everywhere
Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2013
Publications Code US035555
All the material in this publication is copyright
© Pearson Education Ltd 2013

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Mark schemes will indicate within the table where, and which strands of QWC, are being assessed. The strands are as follows:
i) ensure that text is legible and that spelling, punctuation and grammar are accurate so that meaning is clear
ii) select and use a form and style of writing appropriate to purpose and to complex subject matter
iii) organise information clearly and coherently, using specialist vocabulary when appropriate

Using the Mark Scheme

Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge. Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

The mark scheme gives examiners:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.
/ means that the responses are alternatives and either answer should receive full credit.
() means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.

Phrases/words in bold indicate that the meaning of the phrase or the actual word is essential to the answer.
ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

Quality of Written Communication
Questions which involve the writing of continuous prose will expect candidates to:

- write legibly, with accurate use of spelling, grammar and punctuation in order to make the meaning clear
- select and use a form and style of writing appropriate to purpose and to complex subject matter
- organise information clearly and coherently, using specialist vocabulary when appropriate.

Full marks will be awarded if the candidate has demonstrated the above abilities.

Questions where QWC is likely to be particularly important are indicated (QWC) in the mark scheme, but this does not preclude others.

Section A

Question Number	Correct Answer	Mark
1	C	1
Question Number Correct Answer Mark 2 B 1 Question Number Correct Answer Mark 3 B 1 \begin{tabular}{l}		
\end{tabular} | | |

Question Number	Correct Answer	Mark
4	D	1

Question Number	Correct Answer	Mark
5	D	1

Question Number	Correct Answer	Mark
6	A	1

Question	Correct Answer	Mark
Number		1
7	D	1

Question Number	Correct Answer	Mark
8	B	1

Question Number	Correct Answer	Mark
9	C	1

Question Number	Correct Answer	Mark
10	A	1

Question Number	Correct Answer	Mark
11	D	1

Question Number	Correct Answer	Mark
12	C	1

Question Number	Correct Answer	Mark
13	C	1

Question	Correct Answer	Mark
Number		1
14	B	1

Question Number	Correct Answer	Mark
15	D	1

Question Number	Correct Answer	Mark
16	C	1

Question Number	Correct Answer	Mark
17	B	1

Question Number	Correct Answer	Mark
18	A	1

Question Number	Correct Answer	Mark
19	B	1

Question Number	Correct Answer	Mark
20	D	1

Total for Section A = 20 Marks

Section B

Question Number	Acceptable Answers	Reject	Mark
21 (b)(i)	A region / space / volume (around the nucleus / atom) where there is a high probability / chance / likelihood / of finding an electron	Just 'the path an electron takes orbiting around a nucleus' Just 'Position of electrons in an atom'	1
	ALLOW 'area' / 'sub-shell' as alternative for region OR A region where an electron is likely to be found	(

| Question
 Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| 21
 (b) (ii) | | For s-orbital do not allow
 ellipse for first mark
 (1) | 2 |

Question Number	Acceptable Answers	Reject	Mark
$21(\mathrm{c})$	$11 /$ eleven ALLOW $2 p^{6} 3 p^{5}$	$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{5}$	1

Question Number	Acceptable Answers	Reject	Mark
$21(\mathrm{~d})$	$18 /$ eighteen	$1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6} 3 \mathrm{~s}^{2} 3 \mathrm{p}^{6}$	1

Question Number	Acceptable Answers	Reject	Mark
* 21 (e)	Enthalpy / energy / heat / heat energy per mole required/ needed OR Enthalpy / energy / heat / heat energy change per mole to remove one / an electron from gaseous atom(s) "Energy required to remove one mole of electrons from one mole of gaseous atoms" scores all three marks NOTE: The equation: $X(g) \rightarrow X^{+}(g)+e^{-}$ scores the last two marks NOTE: An incorrect equation given with a correct definition in words scores 2 out of 3 marks	"Energy given out ..." for first mark	3

Question	Acceptable Answers												Mark
21 (f)	lonization energy / $\mathrm{kJ} \mathrm{mol}{ }^{-1}$	496	456 3	691 3	954 4	1335 2	$\begin{gathered} 1661 \\ 1 \end{gathered}$	$\begin{gathered} 2011 \\ 5 \end{gathered}$	$\begin{gathered} 2549 \\ 1 \end{gathered}$	$\begin{gathered} 2893 \\ 4 \end{gathered}$	$\begin{gathered} 14136 \\ 7 \end{gathered}$	$\begin{gathered} 15907 \\ 9 \end{gathered}$	2
	lonization number	1st	2nd	3rd	4th	5th	6th	7th	8th	9th	10th	11th	
		\checkmark							\checkmark	\checkmark	\checkmark	\checkmark	
	```All five correct = 2 marks Four/three correct = 1 mark Two/one/none correct = 0 marks```												

Total for Question $21=12$ marks

Question   Number	Acceptable Answers	Reject	Mark
$22($ a)(i)	The mark is for the idea of   impact by high energy electrons   Any ONE of:   High-energy electrons   Bombard with electrons   Fast electrons (fired at sample)   Accelerated electrons (fired at   sample)   (High-energy) electrons fired (at   sample)   (Sample) blasted with electrons   Electron gun	High-density   electrons	1
ALLOW "beam of electrons"			
IGNORE any comments   about ionization of the sample   whether correct or incorrect	IGNORE descriptions of vaporisation		


Question   Number	Acceptable Answers	Reject	Mark
22 (a)(ii)	Electric field /   (negatively) charged plates      ALLOW   voltage plates   electrostatic field   electrical field   pushed by positively (charged) plate/   anodePositively charged   plates alone /   electronic field /   electric current /   electricity /   electrical charge /   (electro) magnetic field /   electric coil	1	


Question   Number	Acceptable Answers	Reject	Mark
22	Magnetic field /magnet /   electromagnet /magnetic plates /   (a) (ii)   electromagnetic field	Negative magnetic field/   negatively charged magnet	1


Question Number	Acceptable Answers	Reject	Mark
22(b)	$\begin{align*} & (194 \times 32.8)+(195 \times 30.6)+(196 \times \\ & 25.4)+(198 \times 11.2)) \div 100 \\ & =195.262 \\ & =195.3(1 \text { d.p. }) \tag{1} \end{align*}$   Method   Answer must be to 1 d.p.   IGNORE $\mathrm{g}, \mathrm{g} \mathrm{mol}^{-1}$ or amu but other wrong units lose a mark   Correct answer with no working   ALLOW TE for second mark if 1 numerical slip in transferring data from the table and answer to 1 d.p		2


Question   Number	Acceptable Answers	Reject	Mark
22(c)	d(-block)		1
	ALLOW D(-block)   IGNORE Transition element(s) /   transition metal(s)		


Question   Number	Acceptable Answers	Reject	Mark	
$22(\mathrm{~d})(\mathrm{i})$	$(\mathrm{Na}): \quad \checkmark$ and $\checkmark$	$(1)$		2
	$\left(\mathrm{Na}_{2} \mathrm{O}\right): \times$ and $\checkmark$	$(1)$		


Question Number	Acceptable Answers	Reject	Mark
$\begin{aligned} & * 22 \\ & \text { (d) (ii) } \end{aligned}$	Na : conducts when both solid and molten due to (delocalized)free / mobile electrons   $\mathrm{Na}_{2} \mathrm{O}$ : does not conduct when solid as no mobile ions / ions unable to move /ions in fixed position   $\mathrm{Na}_{2} \mathrm{O}$ : conducts when molten as has mobile ions	Ions with reference to either form of sodium metal   electrons   electrons	3

Total for Question $22=11 \mathrm{marks}$

Question   Number	Acceptable Answers	Reject	Mark
$23(\mathrm{a})$	$\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}+2}$		1
IGNORE 'where $\mathrm{n}=1,2,3$ etc' or   'where n is greater than 1'			


Question   Number	Acceptable Answers	Reject	Mark
$23(\mathrm{~b})(\mathrm{i})$	$\mathrm{C}_{10} \mathrm{H}_{22}+101 / 2 \mathrm{O}_{2} \rightarrow 10 \mathrm{CO}+11 \mathrm{H}_{2} \mathrm{O}$	$21[\mathrm{O}]$	1
	ALLOW 21/2 $\mathrm{O}_{2}$		
ALLOW any correct multiples			
IGNORE state symbols, even if   incorrect			


Question   Number	Acceptable Answers	Reject	Mark
23(b)(ii)	Any statement that makes it clear   there is not enough air or oxygen		1
	e.g.   Limited supply of air /   limited supply of oxygen /   not enough air /   not enough oxygen /   lack of oxygen /   little amount of oxygen/   small amount of oxygen   IGNORE "it is not completely oxidized"		


Question Number	Acceptable Answers	Reject	Mark
23(c)	First mark		3
	Dative pair of $\mathrm{e}^{-}$between S and righthand O		
	Second mark		
	Two bond pairs between $S$ and lefthand $O$		
	Third mark		
	Two lone pairs on left-hand O, one lone pair on central $S$ and three lone		
	pairs on right-hand O atom (1)		
	If 2 double bonds between sulfur and		
	each oxygen then the third mark can		
	be given for two lone pairs on both oxygens and one lone pair on		
	central S		
	NOTE		
	ALLOW dots and crosses that have been reversed		
	Lone pair electrons can be shown as separated (rather than having to be paired up) - it is the total number of electrons in each outer shell that matters		
	Stand alone marks		
	If molecule shown as charged then 2 max		


Question Number	Acceptable Answers	Reject		Mark
23(d) (i)		  benzene ring		1


Question   Number	Acceptable Answers	Reject	Mark
$23(\mathrm{~d})(\mathrm{ii})$	$\mathrm{C}_{7} \mathrm{H}_{16} \rightarrow \mathrm{C}_{7} \mathrm{H}_{14}+\mathrm{H}_{2}$	Formulae other than   molecular formulae   Any other structural or   displayed formulae	1
	ALLOW $\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{CH}_{3}$   IGNORE state symbols, even if   incorrect	(	


Question   Number	Acceptable Answers	Reject	Mark
(iii)	Any ONE of: (a cyclic alkane)   has more efficient combustion   allows smoother burning   increases octane number   reduces knocking / less likely to   produce pre-ignition   is a more efficient fuel   burns better / easier to burn   /combusts more easily / improves   combustion	Less pollution / reduce   waste	1
High atom economy   IGNORE (a cyclic alkane):   increases the volatility of a fuel   "ignites more easily"   "is a better fuel"   "burns more cleanly"	Produces useful products /   hydrogen   Used to make polymers   higher demand / more   valuable	Produces substances in	
IGNORE (a cyclic alkane) has a lower   boiling point   mentions of viscosity   safer fuel			


Question   Number	Acceptable Answers	Reject	Mark
23(e)(i)	2,2-dimethylpentane   IGNORE missing hyphen/missing   comma	2-dimethylpentane	1


Question   Number	Acceptable Answers	Reject	Mark
23(e)(ii)			


Question   Number	Acceptable Answers	Reject	Mark
23(f)(i)	U.V. / U.V.light / light / sunlight		1
	ALLOW high temperature	heat alone	


Question   Number	Acceptable Answers	Reject	Mark
$23(\mathrm{f})(\mathrm{ii})$	$\mathrm{Cl}_{2} \rightarrow \mathrm{Cl}^{\cdot}+\mathrm{Cl} \cdot /$		
$\mathrm{Cl}_{2} \rightarrow 2 \mathrm{Cl} \cdot$			
IGNORE any curly arrows, even if   incorrect   IGNORE $\mathrm{C}_{4} \mathrm{H}_{10}$ given on both sides		1	


Question   Number	Acceptable Answers	Reject	Mark
$23(\mathrm{f})(\mathrm{iii})$	Homolytic (fission)   IGNORE any formulae and arrows	Photolysis (fission) / free   radical (fission)	1


Question Number	Acceptable Answers	Reject	Mark
23(f)(iv)	(First propagation step) $\begin{equation*} \mathrm{C}_{4} \mathrm{H}_{10}+\mathrm{Cl}^{\cdot} \rightarrow \mathrm{C}_{4} \mathrm{H}_{9} \cdot+\mathrm{HCl} \tag{1} \end{equation*}$   (Second propagation step) $\begin{equation*} \mathrm{C}_{4} \mathrm{H}_{9}{ }^{\circ}+\mathrm{Cl}_{2} \rightarrow \mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Cl}+\mathrm{Cl}^{\cdot} \tag{1} \end{equation*}$   Formulae can be displayed   'dots' can be anywhere on free radical but no dots at all scores zero   ALLOW in either order   Incorrect alkane / halogenoalkane but two correct propagation steps scores 1 out of 2	Any reactions involving Hydrogen radicals scores zero   Reverse of first reaction	2


Question   Number	Acceptable Answers	Reject	Mark
$23(\mathrm{f})(\mathrm{v})$	Any ONE of:		
	$\mathrm{C}_{4} \mathrm{H}_{9}{ }^{\circ}+\mathrm{Cl} \cdot \rightarrow \mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Cl}$		1
	OR		
	$\mathrm{Cl}^{\cdot}+\mathrm{Cl}^{\cdot} \rightarrow \mathrm{Cl}_{2}$		
OR			
	$\mathrm{C}_{4} \mathrm{H}_{9}{ }^{\cdot}+\mathrm{C}_{4} \mathrm{H}_{9} \cdot \rightarrow \mathrm{C}_{8} \mathrm{H}_{18}$		

Total for Question $23=18 \mathrm{marks}$

Question Number	Acceptable Answers	Reject	Mark
24 (a)			4
	(1) for each correct product   ALLOW correct displayed / skeletal / semi-skeletal / structural / semi-structural formula in each case   ALLOW any order of symbols after or before each carbon   ALLOW brackets or no brackets around $\mathrm{Br} / \mathrm{CH}_{3}$ for example $\mathrm{CH}_{2} \mathrm{BrCH}_{3} \mathrm{CBrCH}_{3}$		


Question Number	Acceptable Answers	Reject	Mark
24(b)	First mark   Double-headed arrow from alkene must start from somewhere on $\mathrm{C}=\mathrm{C}$ bond   Partial charge on $\mathrm{Br}_{2}$ molecule must be correct if shown   Second mark is for either correct primary or secondary carbocation and is a standalone mark   Third mark   Double-headed arrow from bromide ion can start from the minus sign, a lone pair on $\mathrm{Br}^{-}$, or from the Br and can go to the C or the + sign on the intermediate   The negative charge must be present on the bromide ion   The final product, if shown, must be correct to gain third mark   Mechanisms with other electrophiles (e.g. HBr, BrOH ) can score $2^{\text {nd }}$ and $3^{\text {rd }}$ marks	Single-headed arrow   Bromine / bromide free radicals   Single-headed arrow (Penalise again)	3


Question Number	Acceptable Answers	Reject	Mark
24(c)	First mark is for calculating the theoretical maximum mass of ethene from 9.2 g ethanol:-   ( $46 \mathrm{~g} \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ gives $28 \mathrm{~g} \mathrm{C}_{2} \mathrm{H}_{4}$ so 9.2 g $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ gives maximum mass of) $\begin{equation*} 5.6 \mathrm{~g} \mathrm{C}_{2} \mathrm{H}_{4} \tag{1} \end{equation*}$   Second mark is for calculating the percentage yield from candidate's theoretical maximum mass:-   $(4.2 / 5.6 \times 100 \%=) 75$ (\%)   IGNORE s.f. except 1 s.f.   OR   First mark   Amount of ethene $=4.2 / 28=0.15$   (mol) and amount of ethanol $\begin{equation*} =9.2 / 46=0.20(\mathrm{~mol}) \tag{1} \end{equation*}$   Second mark $\begin{equation*} \% \text { yield }=0.15 / 0.20=75 \% \tag{1} \end{equation*}$   NOTE   Correct answer with no working scores (2)   \% yield TE on candidate's theoretical mass / moles only if \% yield <100\%   If molar masses are reversed, award one mark for $27.8 \%$	$\text { (0) for } \frac{4.2}{9.2} \times 100 \%$	2

Total for Question $24=9 \mathrm{marks}$

Question Number	Acceptable Answers	Reject	Mark
* 25(a)	First mark   The enthalpy change when one mole of $w$ ater is produced   Second Mark   as a result of the reaction between an acid and an alkali / a base   OR   First Mark   The enthalpy change when one mole of $\mathrm{H}^{+} / \mathrm{H}_{3} \mathrm{O}^{+}$/ oxonium / hydronium / hydroxonium (ions)   Second Mark   Reacts with one mole of / excess /   just enough $\mathrm{OH}^{-}$   ALLOW   First mark   The enthalpy change when one mole of acid is (just) neutralized   (1)   Second Mark   By (excess) alkali / base   ALLOW reverse argument i.e. base neutralising acid	"Energy required..." for 1st mark	2


Question Number	Acceptable Answers	Reject	Mark
25(b)(i)	5643 without working score 2 marks   IGNORE any signs   First mark   Recognition that volume of solution / mass of solution is $100\left(\mathrm{~cm}^{3} / \mathrm{g}\right)$ (1)   Second mark $\Delta \mathrm{T}=13.5^{\circ} \mathrm{C}$   $($ energy released $)=100 \times 4.18 \times 13.5$ $\begin{equation*} =5643(\mathrm{~J}) \tag{1} \end{equation*}$   ALLOW 5.643 kJ   IGNORE s.f. except 1 s.f.   IGNORE $\mathrm{mol}^{-1}$	5643 kJ	2


Question   Number	Acceptable Answers	Reject	Mark
$25(\mathrm{~b})(\mathrm{ii})$	$\left(\right.$ Moles $\left.\mathrm{HCl}=\mathrm{c}_{\mathrm{HCI}} \times \mathrm{V}_{\mathrm{HCI}} / 1000=\right)$		1
	$\frac{2.00 \times 50.0}{1000}$                  IGNORE s.f.		


Question   Number	Acceptable Answers	Reject	Mark
$25(\mathrm{~b})$   $(\mathrm{iii})$	$\mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \rightarrow / \rightleftharpoons \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$		1
NOTE:   ALL State symbols AND ALL   species are required for the mark   ALLOW equations with the "spectator   ions" crossed out			


Question Number	Acceptable Answers	Reject	Mark
$\begin{aligned} & 25(\mathrm{~b}) \\ & (\mathrm{iv}) \end{aligned}$	$-\frac{5.643}{0.1(00)}=-56.43 \mathrm{~kJ} \mathrm{~mol}^{-1}$   First mark:   Correct TE for calculations using   answers to (b)(i) and (b)(ii)   Second mark:   Minus sign   Third mark:   Final answer in units of $\mathrm{kJ} \mathrm{mol}^{-1}$ or $\mathrm{kJ} / \mathrm{mol}$   ALLOW correct answer in $\mathrm{J} \mathrm{mol}^{-1}$ if units given   IGNORE case of $k$ and $J$   IGNORE s.f. EXCEPT 1 s.f.   NOTE:   Correct answer, with or without working, scores (3)	Final answer to 1 s.f.   $\mathrm{kJ} / \mathrm{mol}^{-1}$ or just kJ   just J	3


Question   Number	Acceptable Answers	Reject	Mark
$25(\mathrm{~b})(\mathrm{v})$	The ionic equation is the sam e   OR   number of moles of $\mathrm{H}^{+}$ions and $\mathrm{OH}^{-}$is   the same   OR   number of moles of $\mathrm{H}^{+}$ions and water   is the same   OR   number of moles of $\mathrm{OH}^{-}$ions and   water is the same   ALLOW   Both acid and base are strong and   produce 1 mol of waterJust forms one mole of   water( 1)'	1	

Total for Question $25=10$ marks
Total for Section B = 60 Marks
Total for Paper = 80 Marks

Further copies of this publication are available from
Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623467467
Fax 01623450481
Email publication.orders@edexcel.com
Order Code US035555 Summer 2013


For more information on Edexcel qualifications, please visit our website www.edexcel.com

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE

